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Abstract

Efficient optimization in high dimensional space is a funda-
mental challenge in almost all scientific disciplines. The curse
of dimensionality significantly deteriorates the performance
of sequential optimization methods. Previous approaches par-
tition and constrain the optimization problem on small re-
gions to prevent overemphasized exploration and inefficient
exploitation. However, the complexity of keeping Gaussian
process posteriors often limits the number of candidate points
and therefore reduces the efficiency of optimization. We pro-
pose a Markov chain based sampling algorithm MCMC-
BO to overcome this difficulty by moving the candidate
points towards more reasonable positions. MCMC-BO can
serve as an overarching algorithm with only two additional
hyper-parameters by using existing Bayesian optimization
methods. We provide theoretical guarantees on its conver-
gence under Gaussian process Thompson sampling setting.
We also show in experiments that MCMC-BO outperforms
state-of-the-art methods in high dimensional sequential opti-
mization and reinforcement learning benchmarks.

Introduction
Black-box function optimization is an essential task in ma-
chine learning for neural network hyper-parameter tuning,
reinforcement learning, etc. It also has wide applications in
physical simulation, chemical design, and biological discov-
ery. There is often a lack of gradient information in these
non-convex sequential optimization problems. Bayesian op-
timization (BO) is a popular sampling based optimization
approach with versatility in black-box function optimiza-
tion. It has been successfully applied in problems such as
online learning and sequential decision making. BO builds
a surrogate model for modeling the objective function and
optimizes the acquisition function to propose new samples.

Similar to many other numerical problems, Bayesian op-
timization algorithms are also susceptible to the curse of di-
mensionality. The search space would grow exponentially as
function dimension increases and become intractable under
limited computation budget. Common acquisition functions
also tend to over-explore the uncertainty boundary region
and lacks exploitation in high dimensional input space(Oh,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Gavves, and Welling 2018). Recent developments in high di-
mensional BO include constructing trust regions and space
partition to improve the probability of sample in the promis-
ing regions, which effectively ameliorates the problem of
over-exploration(Eriksson et al. 2019; Wang, Fonseca, and
Tian 2020). To evaluate acquisition function on a continuous
domain, these methods often discretize the search space us-
ing Sobolev sequence(Sobol’ 1967). This kind of discretiza-
tion is inadequate on high dimensional space as the size of
the discretization set are limited, hindering the exploitation
of potential good regions.

To improve optimization performance in high-
dimensional spaces, we adopt Markov Chain Monte
Carlo (MCMC) for BO, which is widely used and can effec-
tively sample from high-dimensional posterior distributions.
We propose MCMC-BO, which transits candidate points
from original positions towards the approximated stationary
distribution of Thompson sampling. Tracking only batch
size number of points during transitions, MCMC-BO sig-
nificantly lowers the vast storage need of candidate points.
Our proposed method can be easily generalized to different
circumstances with only two additional hyper-parameters:
Brownian motion’s noise and number of transitions. With
theoretical performance guarantees, MCMC-BO can serve
as an overarching algorithm linked to any existing BO
method on continuous problems.

Contributions. 1) We propose MCMC-BO, a Bayesian
optimization algorithm which enables better local optimiza-
tion in high-dimensional problems with MCMC. 2) We pro-
vide theoretical guarantees for the regret bound of MCMC-
BO. To our knowledge, this is the first regret bound on high-
dimensional Bayesian optimization problem which can deal
with the scaling of dimensions on candidate points and avoid
the overuse of memory. 3) We experimentally show that
MCMC-BO outperforms other strong baselines on various
high-dimensional tasks. We also provide a baseline for im-
plementing MCMC-BO .

Related Work
The optimization of black-box functions has been broadly
used in many scenarios, such as hyper-parameter tun-
ing(Snoek, Larochelle, and Adams 2012) and experimen-
tal design(Hernández-Lobato et al. 2017). These kinds of
problems can be formalized under the Bayesian optimiza-



tion framework (Shahriari et al. 2015; Frazier 2018). While
conventional BO algorithms are limited to less than 15 pa-
rameters and a few thousand observations, there are more
and more attempts to scale BO to higher dimensional cases
and sample more points with lower computation budgets.
Current efforts include varying or substituting the use of GP
in the process of optimization, assuming low dimensional
data or function structures, or preventing explorations near
domain boundary.

The scalability of the algorithm can be improved by us-
ing either variants of Gaussian process (GP) or other dif-
ferent methods. Using sparse GP, we can compute function
evaluation on large number of points(Seeger, Williams, and
Lawrence 2003; Snelson and Ghahramani 2005; Hensman,
Fusi, and Lawrence 2013). Several algorithms also replace
the use of GP(Rasmussen 2003) with other surrogate mod-
els such as Random Forest(Hutter, Hoos, and Leyton-Brown
2011), Bayesian Neural Network(Springenberg et al. 2016;
Snoek et al. 2015; Hernández-Lobato et al. 2017), and tree
Parzen estimator(Bergstra et al. 2011; Falkner, Klein, and
Hutter 2018) to track large number of observations.

A popular line of research assumes the existence of some
underlying low dimensional structure and transforms high
dimensional space into a lower dimensional subspace in
which BO is feasible. Several works utilizing random em-
beddings can effectively solve problems with the inputs
having millions of dimensions(Wang et al. 2016; Letham
et al. 2020). Nayebi et al. provides a theoretical hashing-
based framework, HesBO, for BO with subspace embed-
dings(Nayebi, Munteanu, and Poloczek 2019). Beyond lin-
ear embeddings, deep generative model can be used to
learn a non-linear mapping between high dimensional input
space and low-dimensional subspace(Lu et al. 2018; Tripp,
Daxberger, and Hernández-Lobato 2020).

Another line of research relies on the additive structure
of the objective function, which decomposes input space
into low dimensional components and therefore reduces
the dimension of sub-problems(Kandasamy, Schneider, and
Póczos 2015; Gardner et al. 2017; Mutny and Krause 2018;
Wang et al. 2018; Kirschner et al. 2019).

Many works also try to prevent BO algorithms from over-
exploring uncertain points near the domain boundary. Some
of them introduce strong priors or dimension dropout to
relieve this issue(Eriksson and Jankowiak 2021; Li et al.
2018). Oh et al. introduces a cylindrical kernel to allocate
more sample points in the center region(Oh, Gavves, and
Welling 2018). TuRBO uses dynamic trust regions to re-
strict samples within hyper-cubes centered around the cur-
rent best points(Eriksson et al. 2019). LA-MCTS recursively
partitions the input space using Monte Carlo Tree Search
(MCTS), allowing BO algorithms to optimize on promising
regions(Wang, Fonseca, and Tian 2020).

Besides Bayesian optimization, evolutionary algorithms
(EA) are common approaches to tackle high dimensional
function optimization(Jin and Branke 2005). CMA-ES is a
popular EA algorithm which adaptively adjusts the covari-
ance matrix to generate new samples(Hansen, Müller, and
Koumoutsakos 2003). Shiwa is a rule-based method that
automatically selects suitable EA algorithms according to

the property of problems, achieving better performance than
other single EA methods on many tasks(Liu et al. 2020).

Methods
Black-box optimization problems aims to find

x∗ ∈ Ω such that f (x∗) ≥ f(x), ∀x ∈ Ω (1)

where f : Ω → R and Ω = [0, 1]d. The observation may
come with Gaussian noise that y(x) = f(x) + ε, where
ε ∼ N

(
0, σ2

)
. Since the objective function f is unknown,

approximating f is a crucial step towards optimization.
Bayesian optimization methods are standard paradigms

for none-gradient black-box problems. Like many other
methods, it faces the difficulty of scaling to higher dimen-
sions. The number of samples required for maintaining the
same level of granularity grows exponentially with dimen-
sion. Moreover, with minimal assumptions (e.g. Lipschitz
continuity) on the structure of f to allow for generalization,
solving the problem could take time that grows exponen-
tially with the number of input dimensions.

In Bayesian optimization, GP is among the most preva-
lent method. GP produces estimates for function values to-
gether with appropriate confidence intervals to quantify un-
certainty, which can be employed to balance between explo-
ration and exploitation. The goal of optimization is to sam-
ple points near the optimum while effectively explore the
sample space. Properly choosing sampling points becomes
a much more critical issue when working in a high dimen-
sional space, in order to successfully employ GP methods
without sampling a large amount of data points that both in-
cur regret and waste computational resources. BO first con-
structs a surrogate model to give a probabilistic guess with
small number of samples, then updates the chosen points
based evaluations or further information. Following the prin-
ciple of optimism in the face of uncertainty, one line of work,
most notably Thompson sampling (TS), models the reward
using probabilistic methods.

Batch optimization attempts to pick the best m (batch
size) points for further evaluation. For high-dimensional
space, full exploration demands an unrealistic amount of
computational resource and time. Therefore, the ability to
perform adequate exploitation on optimal points determines
the final performance. Previous algorithms that attempts to
optimize on high-dimensional spaces include TuRBO and
LA-MCTS. TuRBO limits the candidate set to a small box
around best points and decides to expand or shrink the box
based on later evaluations. LA-MCTS partition the region
with a constructed tree, and MCTS recommends promis-
ing regions to improves the performance of the algorithm.
Both the methods works on how to focus on promising re-
gions. However, in comparison to finding boundaries for
the best points, we argue that the ability to congregate the
candidate points around the optimum could be more impor-
tant and also deserves attention. Discretization on continu-
ous domains makes practical implementations plausible, but
maintaining discretized grids with high precision is costly.
To illustrate, GP-TS (Chowdhury and Gopalan 2017) re-
quires that, to achieve the theoretical upper bound on re-
gret, the size of round t’s discretization set should at least be



|Dt| =
(
BLrdt2

)d
, where B is bound of f ’s RKHS norm, L

is Lipchitz constant, r is the region length, and d the dimen-
sion. Even after partitioning with bifurcated tree with tiny r
(the method proposed by LA-MCTS), achieving such a vast
candidate set size on high dimensional spaces is unrealistic
due to limitations of computation storage. The trade of be-
tween regret and storage urges the need for improvements in
current methods.

We adopt MCMC methods to propose a novel algorithm,
MCMC-BO , to effectively evaluate more points while hav-
ing the ability to maintain a dense, time-varying, discretiza-
tion near promising set of regions for optimization.

Gaussian Process
In Bayesian Optimization, the unknown objective f is
viewed as a probability distribution, and Gaussian process
(GP) utilizes such idea to stochastically model the un-
known f . GP can be determined by it’s mean µ(·) and ker-
nel k(·, ·). The prior distribution of f(x) is assumed to be
N (0, k(x, x)). The sample points AT := [x1, · · · , xT ] and
the observations [y1, · · · yT ] follows the multivariate distri-
bution N (0,KT + σ2I), where KT = [k(x, x′)]x,x′∈AT

.
Therefore, for any x ∈ Ω, we can obtain P(x | x1, · · · , xT ).
The posterior distribution over f is thus Gaussian with mean
µ(x) and covariance kT (x, x

′) that satisfy:

µT (x) = kT (x)
T (KT + σ2I)−1yT

kT (x, x
′) = k(x, x′)− kT (x)

T (KT + σ2I)−1kT (x
′)

σ2
T (x) = kT (x, x

′),

where kT (x) = [k(xi, x)]
T
i=1:T .

Thompson Sampling
Thompson Sampling (TS), often employed in Multi-armed
Bandits (MAB) problems, employs an Bayesian approach
by assigning a prior distribution for the reward estimate of
each arm and updating the posterior through repetitive plays
of wisely-chosen arms. In every round, the algorithm esti-
mate the reward of every arm by sampling from their prior
distributions and plays the arm with the largest estimate.
Thus, exploitation of optimal arms is achieved by heuristi-
cally playing the optimal arm and exploration guaranteed by
the intrinsic uncertainty of probabilistic sampling. For Gaus-
sian arms with dependencies among each other, it is natural
to use GP to approximate the underlying reward distribution.
Chowdhury and Gopalan gave a theoretical analysis for the
algorithm GP-TS, which combines GP and TS to optimize
stochastic MAB problems (Chowdhury and Gopalan 2017).
With an evolving GP, at each round t, GP-TS samples a func-
tion ft from GP(µt(·), kt(·, ·)) and choose the action xt that
maximizes ft.

However, naively employing GP-TS in higher-
dimensional space to minimize an underlying f could
be problematic. The average spacing between a fixed num-
ber of data points scales with the dimension, which leads to
a higher variance in the GP and encourages over-exploration
without sufficient exploitation and optimization over the
promising region.

Figure 1: Illustration of MCMC-BO. The contours are 2d
Rastrigin function. (Left): BO algorithms propose points to
be sampled. The optimization performance is restricted by
insufficient discretization. (Right): Points are adjusted by
MCMC-BO , reaching regions with higher value.

Markov Chain Monte Carlo Method
To solve the problem of over-exploring the high-
dimensional sample space, we can utilize Markov Chain
Monte Carlo (MCMC) methods that allows for a more ef-
ficient and effect way of choosing and transitioning between
sampling points.

Metropolis-Hastings (MH) is a MCMC sampling algo-
rithm that can sample from a target distribution π(x), x ∈
X known up to a constant, i.e. when we have knowledge of
πd(x) = c · π(x) (Metropolis et al. 1953). The constant c is
often the normalizing constant for the distribution π(x) and
the MH algorithm is especially useful when finding explicit
solution to the integral is difficult. We also need to choose
an appropriate proposal distribution q(·, x) that has support
on all of the support of π(·); the variance of q(·, x) influ-
ences tendencies to exploit or explore, depending on differ-
ent target distributions. From q(·, x), the algorithm samples
a candidate point y ∈ X given the current value x accord-
ing to q(y, x). Then the Markov Chain transitions to y with
acceptance probability α(x, y) = min

{
1, πd(y)q(y,x)

πd(x)q(x,y)

}
.

Therefore, the transition probability α(x, y) naturally in-
duces a transition kernel for the Markov Chain given by

KMH(y, x) = q(y, x)α(x, y)+δx(y)

∫
X
q(y, x)

(
1−α(y, x)

)
dy.

It can be verified that KMH(·, ·) is reversible w.r.t. π(·), i.e.

π(x)KMH(x, y) = π(y)KMH(y, x),

which guarantees that the MH algorithm eventually con-
verges to a stationary distribution that is exactly π(·) (An-
drieu et al. 2003).

Approximation of TS with MH algorithm
Thompson sampling method samples from the posterior of
GP Regression and picks the point with the best result.



From another perspective, Thompson sampling gives each
candidate point xi a probability P (xi) = P (ft(xi) ≥
ft(xj)), i ̸= j. The calculation of the probability of each
point is equivalent to the calculation of the CDF of mul-
tivariate normal distribution, which is indeed intractable
when dimension is greater than 2. On the other hand,
sampling from a multivariate normal distribution require
its Cholesky factorization. The computation cost of fac-
torizing the covariance matrix kT (x

∗, x∗) = k(x, x) −
kT (x∗)T (KT + σ2I)−1kT (x

∗) of the newest fashion is
O(m2 ∗n+n3)(Stanton et al. 2021). However. High dimen-
sion space could need numerous points lead to large matrix
and slow prediction.

Algorithm 1: MCMC-BO

Input Initial dataset D0, batch size m, MCMC transition
number N , transition noise σ
for t = 0, 1, · · · do

Update posterior distribution on f using Dt

Create discretized candidate points x0
t from continuous

search domain
{MCMC transition start}
for i = 0 to N − 1 do

for k = 0 to m− 1 do
Sample u ∼ Unif[0, 1]
Sample xi+1

tk ∼ xi
tk +N (0,σ)

if u ≥ min
{
1,

P (ft(x
i+1
tk ))≥P (ft(x

i
tk))q(x

i+1
tk |xi

tk)

P (ft(xi
tk))≥P (ft(x

i+1
tk ))q(xi

tk|x
i+1
tk )

}
then
xi+1
tk ← xi

tk // Reject the transition
end if

end for
end for
{MCMC transition end}
Observe yt = f(xNt )
Dt+1 ← Dt ∪ (xN

t , yt)
end for

Markov Chain Monte Carlo are useful when sampling
from intractable distribution, and the MH algorithm is
one of the fundamental algorithms in this field. Accord-
ing to traditional MH method, the accept rate is α =

min
{
1,

P (ft(xp)≥ft(x),∀x∈Dt)q(xp|xo)
P (ft(xp)≥ft(x),∀x∈Dt)q(xo|xp)

}
, where xp stands

for the proposal point, xo stands for the original point and
q(· | ·) stands for the transition kernel. As we describe
above, this is still intractable, so we make an approximation.

Suppose x = (xo, xp) are two candidate points after n
samples denoted by historyH = {(xt, yt)}nt=1, we can view
the function values y := (yp, yo) = (ft(xp), ft(xo)) associ-
ated to selected points (xp, xo) as a jointly-Gaussian random
vector with distribution stated as the GP regression stated
above. From linear transformations of Gaussian random vec-
tor, let cT = [1 −1] and Kn = [k(x1:n, x1:n)] ∈ Rn×n.,
we have that yp − yo ∼ N

(
cTµ, cTΣc

)
, where cTµ =

[k(xp, x1:n)−k(xo, x1:n)]
T (Kn+σ2I)−1y1:n and cTΣc =

[k(xp, xp) + k(xo, xo) − 2k(xp, xo)] − (ckn(x))
T
(Kn +

σ2I)−1 (ckn(x))
T Since cTµ, cTΣc ∈ R, we have that

P (yp − yo > 0|H) = Φ
(

cTµ
cTΣc

)
(here Φ(·) denotes the

CDF of the standard normal).Therefore

α = min

1,
Φ
(

cTµ
cTΣc

)
q(xp|xo)

(1− Φ
(

cTµ
cTΣc

)
)q(xo|xp)


.

A demonstration of MCMC-BO is shown in Algorithm 1.
Our proposed method is compatible with any existing BO al-
gorithms over continuous domain (see Appendix). MCMC-
BO prepares a batch of m candidate points xi

tk each round
either from direct discretization or points to be executed
from other algorithms, where t stands for the round number,
k = 1, 2, 3, · · · ,m, and i stands for transition times. Then
with a proposed transition kernel, often defined as the Brow-
nian motion: xi+1 − xi ∼ N (0,σ), we generate m pairs of
points xi

tk, xi+1
tk . We accept or decline the transition with

the ratio stated above. The random walk of Markov chain
enables dense discretization of continuous space on more
optimal regions, as illustrated in Fig 1.

Based on this we can also derive the gibbs sampling ver-
sion of MCMC-BO. As gibbs sampling is a special version
of MH algorithm. It transit the sample on only one dimen-
sion at a time. With Q (x′

d, x−d | x) = x′
i ∼ U(xd) where

xd, x
−d stands for the dth dimension of the sample and

x−d stands for the rest dimension of the sample. Therefore,

α =
p(x′

d,x−d)Q(xd,x−d|x′
d,x−d)

p(xd,x−d)Q(x′
d,x−d|xd,x−d)

= 1 Gibbs sampling based

algorithm fits more properly for vanilla Bayesian optimiza-
tion with randomized intialization like Soblev sequence. It
transits the candidate points on one dimension at each round
with Thompson sampling.

Theoretical Analysis
The key contribution of our theoretical analysis lies in three
aspects. Firstly, the original GP-TS setting requires a dis-
cretization set Dt of the function Domain D. However, the
size of the set |Dt| goes exponentially with the number of di-
mensions. We lift the set size requirement in our analysis and
are still able to obtain the same upper bound of GP-TS with
only a difference in the constant term. Moreover, the inver-
sion of the covariance matrix required by Thompson sam-
pling is of at least O(t4) complexity, where t stands for num-
ber of rounds. Our algorithm abandons this requirement and
substitute with the need of number of MCMC’s transition
times. Lastly, we prove that the approximation of original
Thompson sampling does not satisfy MH’s reversibility, but
it still has a stationary distribution which can be bounded.

The following notation is used in the proofs. Let {xt}∞t=1

be an Rd-valued discrete time stochastic process predictable
with respect to the filtration {Ft}∞t=0, i.e., xt isFt−1,∀t ≥ 1,
Let{εt}∞t=1 be a real-valued stochastic process such that for
some R ≥ 0 and for all t ≥ 1, εt is (a) Ft-measurable,
and (b) R-sub-Gaussian conditionally on Ft−1.Let k : Rd ×
Rd → R be a symmetric, positive-semidefinite kernel.We
use the notion of regret as the evaluation metric for the per-
formance of our algorithm. Denote x∗ = argmaxx∈Df(x),
the cumulative regret over the horizon T of our algorithm



Figure 2: The figures are constructed from a 50× 50 discretization of D = [−1, 1]2. (a): The stationary distribution of MCMC-
BO and the congregated points obtained after convergence of the transition process from current GP information, (b): Thomp-
son sampling distribution simulated using Monte Carlo, (c): standard deviation of TS distribution over 10 trials of 106 samples,
and (d): GP posterior with surfaces being µ and Σ on which MCMC-BO transitions are performed.

is denoted by RT =
∑T

t=1 rt, where rt = f(x∗) − f(xt).
We also impose smoothness assumptions on f in the Re-
producing Kernel Hilbert Space (RKHS) such that for f ∈
Hk(D), ||f ||k ≤ B and f satisfy a Lipschitz continu-
ous with constant B · L. Here Hk(D) is the corresponding
RKHS. In our analysis, we work with a discretization Dt

with size |Dt| =
(
BLrdt2

)d
such that for every x ∈ D,

|f(x)− f ([x]t)| ≤ ∥f∥kL ∥x− [x]t∥1 ≤ 1/t2,, where

L = supx∈D supj∈[d]

(
∂2k(p,q)
∂pj∂qj

∣∣∣
p=q=x

)1/2

. Therefore, we

can bound the deviations of available points from this time-
varying discretization to the true optimum which may not be
obtainable due to such discretization.

We prove the regret bound of MCMC-BO following a sim-
ilar approach as in the proofs for TS, GP-UCB, and GP-
TS (Thompson 1933; Srinivas et al. 2009; Chowdhury and
Gopalan 2017). The detailed proof is attached in the Ap-
pendix.

We first give formal definition of Markov chain and the
transition kernel.

Definition 1. From measure theory we recall the concept of
a kernel. Consider two measure spaces(Ω,A) and (Ω′,A′).
The function

K : Ω×A′ → [0,∞) (2)

is a kernel from (Ω,A) to (Ω′,A′) if

• ω 7→ K (ω,A′) is A-measurable ∀ A′ ∈ A′

• A′ 7→ K (ω,A′) is a measure on A′ ∀ ω ∈ Ω.

If K (ω,Ω′) = 1, the kernel is a so-called Markov Kernel.

In a similar fashion to the MH algorithm, which gener-
ally can be described by a transition kernel Q(x,A), x ∈
Rd, A ∈ B(X) corresponding to the proposal density
q(x, y) (given by kernel Q(x, dy)), the acceptance prob-
ability α(x, y) of MCMC-BO is given by α(x, y) =

min
{
1, πd(y)q(y,x)

πd(x)q(x,y)

}
. Denote Φ = {Φn, n ∈ Z>0} as the

Markov chain induced by MCMC-BO and π(x) as the sta-
tionary distribution.

Theorem 1. For the proposed approximated transition
method, it is not a reversible Markov chain, but it still has a
stationary distribution π(x).

In Fig 2 we demonstrate a 2D demo of the stationary dis-
tribution of MCMC-BO and compared it with TS setting.
As the size of discretization in higher dimensional space can
easily blow up, we only track a batch of m points at a time,
and do not require the inversion matrix of the points’s covari-
ance. With enough transition times, we can still locate the
points in the promising region with high probability. There-
fore, we can achieve a similar bound on the difference be-
tween f(x) and f([x]t) when x is near the optimum by the
increase of MCMC-BO’s transition times.
Lemma 1. For any stationary distribution from the MCMC-
BO’s chain π(x),∃nπ,∀n ≥ nπ we can reach a close distri-
bution ∥Pn(x, ·)− π∥ ≤ ϵ

Regret increases when the approximation function can no
longer accurately represent the underlying f . Thus, we hope
that the function values of selected points xt and the approx-
imation at each time step t are not too far away. We define a
benign event Ef (t) and a benigh set Gt here.
Definition 2. Define Ef (t) as the event that for all x ∈ D,

|µt−1(x)− f(x)| ≤ vtσt−1(x),

where c̃t =
√
4 ln t+ 2d ln (BLrdt2) and ct = vt (1 + c̃t)

Definition 3. Define the set of points with better estimated
mean in discretization Dt at round t as

Gt := {x ∈ Dt : µt−1(x) ≥ f ([x⋆]t)− vtc̃tσt−1(x)}

This bound measures the difference between function values
at the closet point to x⋆ in Dt and at the t− 1’s round GP’s
mean value of x.
Theorem 2. For discretization Dt stationary distribution π
and superior set

Ξt := {µt−1(x) ≥ f(x⋆)− ϵ}

we have that ∀ϵ > 0,∃ t, s.t. π(Ξt) > q where q is a con-
stant from the transition matrix.



Lemma 2. For any historyH′
t−1 such that Ef (t) is true,

P [Ξt ∈ Gt] ≥ 1− 1/t2.

Theorem 3. For any filtration F ′
t−1 such that Ef (t) is true,

P
[
xt ∈ Gt | F ′

t−1

]
≥ p− 2/t2

We organize the reward with a regular form into two part.
From the choice of discretization sets Dt, the instantaneous
regret at round t is given by [x⋆]t which is the closest point to
x⋆ in Dt. And rt = f (x⋆)−f ([x⋆]t)+f ([x⋆]t)−f (xt) ≤
1
t2 +∆t (xt) Now at each round t, after an action is chosen,
MCMC-BO updates the GP based on evaluation of f(xt).
However, if we play a suboptimal arm, the regret suffered
can be much higher than the improvement of our knowledge.
To overcome this difficulty, at any round t, we divide the
arms (in the present discretization Dt) into two groups: Gt

and otherwise. By showing that the probability of playing an
arm from Dt\Gt is small, the regret from undesirable arm is
then bounded.
Theorem 4. Let δ ∈ (0, 1), D ⊂ [0, r]d be compact
and convex, ∥f∥k ≤ B and {εt}t a conditionally R-sub-
Gaussian sequence. Running GP-TS for a function f lying
in the RKHS Hk(D) and with decision sets Dt chosen as
above, with probability at least 1− δ, the regret of MCMC-

BO satisfies Õ
(
γT
√
dT

)
Experiments

In this section, we evaluate MCMC-BO on both high-
dimensional synthetic functions and Mujoco tasks. We also
conduct comprehensive study on different MCMC transition
numbers and transition noises to fully examine the perfor-
mance and robustness of MCMC-BO . We further validate
that our proposed method is an effective GP-based BO algo-
rithm as other Multi-Armed Bandit algorithms.

We compare MCMC-BO to state-of-the-art baselines of
high-dimensional BO algorithms (TuRBO, LA-MCTS and
HesBO) and EA algorithms (CMA-ES and Shiwa). For
all BO algorithms, we use Thompson sampling to sample
batches in each iteration and discretize the continuous search
domain using scrambled Sobolev sequence. To evaluate per-
formance of MCMC-BO, we used TuRBO and LA-MCTS
as its BO component. Performance figures show the mean
performance of algorithms with one standard error.

High-Dimensional Synthetic Functions
We choose to optimize two popular synthetic problems:
Ackley function over domain [−5, 10]d, and Rastrigin func-
tion over domain [−5, 5]d. For dimension d of all functions,
we choose d = 200, 400 and 800 to evaluate performance
over high-dimensional problems, and set same transition
number as function dimension. All problems start with 200
initial points and sample a batch of 100 points in each itera-
tion.

Fig 3 suggests that MCMC-BO consistently outperforms
other baselines on all functions. In higher dimensions d =
800, uniform discretization can not support good exploita-
tion in such dimension, and TuRBO and LA-MCTS degen-
erate to same level performance as EA algorithms. MCMC-
BO achieves the best performance in all selected dimensions

by allocating limited action points to more promising re-
gion. Note that on Ackley-200d task, Eriksson et al. reports
a mean performance of 5 by TuRBO-1 after 10k evalua-
tions(Eriksson et al. 2019), while MCMC-BO with TuRBO-
1 reaches a mean performance of 4 after only 3k evaluations
under same initial number and batch size.

Mujoco Locomotion Task
Mujoco locomotion tasks are popular benchmarks for re-
inforcement learning (RL) algorithms(Todorov, Erez, and
Tassa 2012). Here we choose Hopper task and Half-Cheetah
task in spaces of dimension 33 and 102. To evaluate perfor-
mance of these sampling-based algorithms, we optimize a
linear policy: a = Ws(Mania, Guy, and Recht 2018). The
elements of parameter matrix W are continuous and in the
range of [−1, 1]. For each proposed policy, the reward is
computed over 10 episodes. Both tasks start with 200 ini-
tial points and sample a batch of 50 points in each iteration.
We set the transition number to 200 on both tasks.

Fig 4 shows the optimization performance of all algo-
rithms. In Hopper task, MCMC-BOwith TuRBO-20 algo-
rithm converges faster than original TuRBO-20. In higher
dimensional Half-Cheetah task where EA algorithms fail to
find good rewards, MCMC-BO with TuRBO-1 still outper-
forms other baselines.

Function
MCMC transition noise

0.0001 0.0005 0.001 0.005 0.01

Ackley-20d −0.51±0.08 −0.25±0.27 −0.18±0.02 −0.17±0.02 −0.22±0.06

Rastrigin-20d −5.41±2.30 −4.59±2.05 −2.13±2.01 −2.49±0.71 −4.17±1.29

Table 1: Ablation studies on hyper-parameters of MCMC-
BO. The results are the means and standard deviations of
the five replicate independent experiments on Ackley-20d
and Rastrigin-20d when the transition number is 300 (The
result of the Rastrigin function is added by 180).

Ablations on Hyperparameters
There are only two hyperparameters in MCMC-BO: MCMC
transition number and noise. Here we conduct ablation study
on Ackley-20d function and Rastrigin-20d function. Table
1 shows that the performance of MCMC-BO is not sensi-
tive to transition noise when the transition number is large
enough. As transition number increases, the performance
steadily improves until convergence at a certain number (see
Appendix).

Performance on low-dimensional problems
We compare MCMC-BO with GP-TS, and GP-UCB on 1d
and 2d synthetic functions. Fig 5 shows that our proposed
method achieves competitive performance against two pop-
ular BO algorithms, serving as an effective method in low-
dimensional cases.

To a certain extent, MCMC-BO mainly improves the per-
formance by choosing more candidate points on GP obeying
a Thompson sampling manner. Compared to directly intro-
ducing more points, our proposed method frees the need of



Figure 3: Synthetic functions.

Figure 4: Mujoco locomotion tasks.

inverting huge matrix, leading to less memory and compu-
tation cost. Compared to UCB based acquisition, MCMC-
BO is a probability distribution over the domain, more
straightforward to perform a batch solution. Meanwhile, GP-
UCB only utilize the diagonal information of the covari-
ance matrix of f(xi) and Thompson sampling use the whole
matrix’s information at a time. As a compromise, MCMC-
BO use a 2× 2 sub-matrix at a time in a divide-and-conquer
strategy to reduce computation cost and reach an approxima-
tion stationary distribution of original Thompson sampling.

Conclusion and Future Work
Sequential optimization in high dimensional space is a task
with profound impact in numerical analysis and optimiza-
tion research. In this paper, we propose MCMC-BO to im-
prove sample efficiency of high dimensional Bayesian op-
timization. MCMC-BO allows for versatile transitions to
promising regions instead of maintaining a huge candidate
set, reaching better likelihood of the stationary distribution
of the approximated Thompson sampling. Our algorithm,
which can be viewed as a GP-based bandit algorithm, yields
an effective distribution approximation of Thompson sam-

Figure 5: We compare MCMC-BO to GP-TS and GP-UCB
on low-dimensional functions. We do 50 replicates of inde-
pendent experiments. For each method we depict the distri-
bution over the optimal value encoded as a violin plot, with
horizontal bars 20% quantiles.

pling for optimization without the need to compute inverse
matrices of thousands of dimensions. We derive the regret
bound of MCMC-BO under high-dimensional cases without
memory overuse. We also conduct comprehensive evalua-
tions to show that MCMC-BO can improve on existing pop-
ular high-dimensional BO baselines.

Future directions include developing parallel-
computation mechanisms to improve the computation
speed, and constructing Markov chains which can incorpo-
rate the used of gradient information from GP to accelerate
the convergence rate. Notice that unlike other discretiza-
tion methods, MCMC-BO doesn’t impose any regularity
assumptions on the sampling candidate regions. This could
be an advantage when combining MCMC-BO with more
complex space partition algorithms.
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Appendix A Theoretical Analysis

We impose smoothness assumptions on f , the objective function, to begin with our analysis. In the Reproducing Kernel

Hilbert Space (RKHS) corresponding to our kernel k, we assume that the unknown f ∈ Hk(D) satisfies ||f ||k ≤ B.

Here Hk(D) is the corresponding RKHS, note that the RKHS norm satisfies f ∈ Hk(D)if and only if ||f ||k < ∞.

Moreover, f should be Lipschitz continuous with constant B · L. In our analysis, we work with a discretization Dt

of time-varying size as a necessary tool for bounding the regret. However, such discretization is only an analytical

tool rather than a practical requirement. we choose a compact and convex domain D ⊂ [0, r]d and discretization

Dt with size |Dt| =
(
BLrdt2

)d
such that ∥x− [x]t∥1 ≤ rd/BLrdt2 = 1/BLt2 for all x ∈ D, where L =

supx∈D supj∈[d]

(
∂2k(p,q)
∂pj∂qj

∣∣∣
p=q=x

)1/2

. This implies, for every x ∈ D, |f(x)− f ([x]t)| ≤ ∥f∥kL ∥x− [x]t∥1 ≤

1/t2. Here we first repeat Definition 1-3 from the main paper.

Definition 1. From measure theory we recall the concept of a kernel. Consider two measure spaces(Ω,A) and

(Ω′,A′). The function

K : Ω×A′ → [0,∞) (1)

is a kernel from (Ω,A) to (Ω′,A′) if

• ω 7→ K (ω,A′) is A-measurable ∀ A′ ∈ A′

• A′ 7→ K (ω,A′) is a measure on A′ ∀ ω ∈ Ω.

If K (ω,Ω′) = 1, the kernel is a so-called Markov Kernel.

Definition 2. Define Ef (t) as the event that for all x ∈ D,

|µt−1(x)− f(x)| ≤ vtσt−1(x),

where c̃t =
√
4 ln t+ 2d ln (BLrdt2) and ct = vt (1 + c̃t)

Definition 3. Define the set of points with better estimated mean in discretization Dt at round t as

Gt := {x ∈ Dt : µt−1(x) ≥ f ([x⋆]t)− vtc̃tσt−1(x)}

This bound measures the difference between function values at the closet point to x⋆ in Dt and at the t − 1’s round

GP’s mean value of x.

Definition 4. 1. A Markov chain with n-step transition probability Pn(x,A) = P (Φn ∈ A | Φ0 = x) is φ-

irreducible if there exists a measure φ such that

φ(A) > 0⇒
∑
n

Pn(x,A) > 0, for x ∈ X.

2. For a φ-irreducible chain, any set A with φ(A) > 0 contains a small set C such that for δ > 0, n > 0 and

1



probability measure ν concentrated on C,

Pn(x, ·) ≥ δν(·), for x ∈ C. (2)

3. The chain is aperiodic if for some small set C with φ(C) > 0, the greatest common divisor of all the n such that

(2) is true is 1.

4. The chain Φ with transition probability Pn(x, ·) and an invariant distribution ϕ for Φ is uniformly ergodic if

there exists a sequence τ(n) converging to 0 such that for all x, || Pn(x, ·)− π ||≤ τ(n).

Lemma 3. [7] For any Markov chain the following are equivalent:

1. The chain is aperiodic and the following condition hols: there is a probability measure ϕ on B(X) and ϵ >

1, δ > 0, m ∈ Z>0 such that when ϕ(A) > ϵ, infx∈X Pm(x,A) > δ.

2. For some small set C we have supx∈X Ex[τC ] <∞, where τC is the first return time to C.

3. Φ is uniformly ergodic.

When any of the above criterion is satisfied, for any x we can bound the rate of convergence by

∥Pn(x, ·)− π∥ ≤ (1− δ)[n/m].

Lemma 4. A chain Φ is π-irreducible if π(y) > 0⇒ q(x, y) > 0, for x ∈ X. The MCMC-BO’s chain Φ is aperiodic

and every compact set C with µ(C) > 0 is small if π(x) and q(y, x) are positive and continuous for all x, y.

Proof. See [7]

Lemma 5. The MCMC-BO’s Markov chain is aperiodic, acyle and p-irreducible, it has stationary distribution. And

any state x has a finite expectation of first return time, i.e. Ex[τx] <∞ and Ex[τC ] <∞.

Proof. The MCMC-BO’s chain Φ has finitely many states and any state x. The final transition matrix denote as Φ =

Q ·α. For a proposed chain (Brownian motion or uniform distribution) Qi,j ≥ 0, ∀ i, j. As αi,j = min(1, Ψ(·)
1−Ψ(·) ) ≥

0∀i ̸= j. We denote the transition probability from point i to j as Φij = αijQij ≥ 0∀i ̸= j and Φii ≥ Qii ≥ 0.

Therefore, the chain is acyclic and irreducible. For a finite state chain, it has finite expectation of first return time

Ex[τx] <∞ and Ex[τC ] <∞.

Theorem 1. For the proposed approximated transition method, it is not a reversible Markov chain, but it still has a

stationary distribution π(x).

Proof. Intuitively, MH algorithm leverage the ratio of stationary distribution. And as we shown above, for a symmetric

proposal chain q(xo, xp) = q(xp, xo) = Q(xo − xp) where xo, xp ∈ Dt whether the ratio P (ft(xp)≥ft(xo))q(xp|xo)
P (ft(xo)≥ft(xp))q(xo|xp)

is greater than one is only determined by µ(xo) − µ(xp). Therefore, we can rank the distribution according to µ(x)

2



given by posterior. For any three point xi, xj , xj satisfying µ(xi) > µ(xj) > µ(xk) if the MH chain is reversible, then

π(xi)Pij = π(xj)Pji and should satisfy that

π(xi)

π(xj)

π(xj)

π(xk)

π(xk)

π(xi)
=

Pij

Pji

Pkj

Pjk

Pki

Pik
= 1

From the given rank P (ft(xi) ≥ ft(xj)), P (ft(xj) ≥ ft(xk)), P (ft(xi) ≥ ft(xk)) are greater than 1
2 . Therefore,

Pij

Pji

Pkj

Pjk

Pki

Pik
=

P (ft(xj>xi))
P (ft(xi>xj))

P (ft(xk>xj))
P (ft(xj>xk))

· 1 < 1. Contradicts with the assumption. But as discretization set Dt, it has

finite state number Nt. From Lemma 5,4, it has a stationary distribution.

Lemma 1. For any stationary distribution from the MCMC-BO’s chain π(x),∃nπ,∀n ≥ nπ we can reach a close

distribution ∥Pn(x, ·)− π∥ ≤ ϵ

Proof. This follows from Theorem1 and Lemma3,5

Lemma 6. Let {xt}∞t=1 be an Rd-valued discrete time stochastic process predictable with respect to the filtration

{Ft}∞t=0, i.e., xt isFt−1-measurable ∀t ≥ 1. Let {εt}∞t=1 be a real-valued stochastic process such that for some R ≥ 0

and for all t ≥ 1, εt is (a) Ft-measurable, and (b) R-sub-Gaussian conditionally on Ft−1. Let k : Rd × Rd → R be

a symmetric, positive-semidefinite kernel with associated feature map φ : Rd → Hk and RKHS Hk. Denote Kt as the

t× t matrix Kt(i, j) = k (xi, xj) , 1 ≤ i, j ≤ t.

Let 0 < δ ≤ 1. For a given η > 0, with probability at least 1− δ, the following holds: ∀ t > 1,

∥ε1:t∥2((Kt+ηI)−1+I)
−1 ≤ 2R2 ln

√
det ((1 + η)I +Kt)

δ
.

Proof. See [2].

Lemma 7. Letting St =
∑t

s=1 εsφ (xs) and define the (possibly infinite dimensional) matrix Vt = I+
∑t

s=1 φ (xs)φ (xs)
T ,

we have, whenever Kt is positive definite, that

∥ε1:t∥(K−1
t +I)

−1 = ∥St∥V −1
t

,

where ∥St∥V −1
t

:=
∥∥∥V −1/2

t St

∥∥∥
Hk

denotes the norm of V −1/2
t St in the RKHS Hk.

(Note that for any x ∈ Rt and A ∈ Rt×t, ∥x∥A :=
√
xTAx. Moreover, if Kt is positive definite ∀t ≥ 1 with

probability 1, then the conclusion above holds with η = 0).

Proof. See [2].

Lemma 8. Following the analysis of GP-UCB, we make use of γt, the maximum information gain at time t, to quanti-

tatively bound the variance term σt(x). It is defined as

γt := max
A⊂Ω: |A|=t

I(yA; fA),

3



where I(yA; fA) denotes the mutual information between fA = [f(x)]x∈A and yA = fA + ϵA such that ϵA ∼

N (0, λv2I). I(yA; fA) is a function relating to uncertainty reduction after observing yA from the actions in A. For a

compact subset Ω ⊆ Rd,

γT ∈

O
(
(lnT )d+1

)
, if kSE(x, x

′) = exp
(
−
(
2l2

)−1 ∥x− x′∥2
)
.

O
(
T d(d+1)/(2ν+d(d+1)) lnT

)
, if kMatern(x, x

′) =
(
21−ν/Γ(ν)

)
rνBν(r).

where l is a lengthscale parameter, ν controls the smoothness of sample paths, Bν a modified Bessel function, and

r = (
√
2ν/l) ∥x− x′∥ [9].

For every t ≥ 0, the maximum information gain γt, for the points chosen by Algorithm 1 and 2 satisfy, almost

surely, the following :

γt ≥
1

2
ln

(
det

(
I + λ−1Kt

))
γt ≥

1

2

t∑
s=1

ln
(
1 + λ−1σ2

s−1 (xs)
)
.

Lemma 9. Let x1, . . . xt be the points selected by the algorithms. The sum of predictive standard deviation at those

points can be expressed in terms of the maximum information gain. More precisely,

T∑
t=1

σt−1 (xt) ≤
√

4(T + 2)γT .

Proof. See [2].

Lemma 10. For a Gaussian random variable X with mean µ and standard deviation σ, for any β > 0, from gaussian

tail bound P[(X − µ) ≥ t] = P
[
eλ(X−µ) ≥ eλt

]
≤ E[eλ(X−µ)]

eλt , we have that

P
[
X − µ

σ
> β

]
≥ e−β2

4
√
πβ

P[X ≥ µ+ β] ≤ e−
β2

2σ2 , ∀t ≥ 0

(3)

Definition 5. Define the set of saturated points St in discretization Dt at round t as

St := {x ∈ Dt : ∆t(x) > ctσt−1(x)}

where ∆t(x) := f ([x⋆]t) − f(x), the difference between function values at the closest point to x⋆ in Dt and at x.

Clearly ∆t ([x
⋆]t) = 0 for all t, and hence [x⋆]t ∈ Dt is unsaturated at every t.

Lemma 11. [2] Under the same hypotheses as those of Theorem 6 , let D ⊂ Rd, and f : D → R be a member of the

RKHS of real-valued functions on D with kernel k, with RKHS norm bounded by B. Then, with probability at least

1− δ, the following holds for all x ∈ D and t ≥ 1 : |µt−1(x)− f(x)| ≤
(
B +R

√
2 (γt−1 + 1 + ln(1/δ))

)
σt−1(x),

where γt−1 is the maximum information gain after t − 1 rounds and µt−1(x), σ
2
t−1(x) are mean and variance of

4



posterior distribution defined as in Equation 2, 3, 4, with λ set to 1 + η and η = 2/T .

Lemma 12. Consider the stationary distribution as π and the proposal distribution as Q, divide the discretization

set Dt into three subgroups D1
t , D

2
t , D

3
t which satisfy that for any xD1

∈ D1
t , xD2

∈ D2
t , xD3

∈ D3
t ,if we have

µt−1(xD1
) ≥ µt−1(xD2

) ≥ µt−1(xD3
). We denote πi =

∑
x∈Di

P (x). And for the proposal distribution Q, we have

that

π3 ≤
Q13α13

1−Q33
(4)

Proof. Suppose that π = [π1, π2, π3] is the stationary distribution of the three subgroups, then we must have that

(
π1 π2 π3

)

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 ·

1 α12 α13

1 1 α23

1 1 1


 =

(
π1 π2 π3

)
, (5)

where αij denotes the acceptance probability of transfering group i to group j. By assumption of µt−1(xDi
), we

known that for i ≥ j, αij = 1. Thus, (5) gives

π3 = π1Q13α13 + π2Q23α23 + π3Q33.

Subsituting π1 = 1− π2 − π3, we have

π3 = (1− π2 − π3)Q13α13 + π2Q23α23 + π3Q33

π3(1 +Q13α13 −Q33) = Q13α13 + π2(Q23α23 −Q13α13)

Denote

(αij)min := min
x,x′

α(x, x′) s.t. x ∈ Di
t, x

′ ∈ Dj
t

(αij)max := max
x,x′

α(x, x′) s.t. x ∈ Di
t, x

′ ∈ Dj
t ,

and notice that ∀ i, j, π2 = 1− π1 − π3 ≤ 1− π3 and αij ≤ 1. We thus have

π3(1 +Q13(α13)min −Q33) ≤ Q13(α13)max − π2Q13(α13)min + π2Q23α23

≤ Q13(α13)max − π2Q13(α13)min + (1− π3)Q23

π3(1 +Q13(α13)min −Q33 +Q23) ≤ Q13(α13)max − π2Q13(α13)min +Q23

π3 ≤
Q13(α13)max − π2Q13(α13)min +Q23

1 +Q13(α13)min −Q33 +Q23

≤ Q13(α13)max

1−Q33

W.L.O.G., suppose that Q, the proposal distribution, is a uniform, then following the assumptions of GP-TS, we
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can assume that the size of Dt is approximately c · T 2, for c a constant. Denote |m| as the number of elements

corresponding to π1, then we have

π3 ≤
Q13 · α13

1−Q33 +Q13α13
≤ Q13α13

1−Q33
=

1− m
Ct2

m
Ct2

· α13.

Lemma 13. Now we define D3
t := St := {x ∈ Dt : ∆t(x) > ctσt−1(x)} and D1

t := {x ∈ Dt : ∆t(x) < vtσt−1(x)} ∈

Gt. Then we have
µ3 − µ1

σ1 + σ3
≤ −kt

and kt = (c̃t − 2)vt ∈ O(
√
ln (BLrdt2) ((lnT )d+1))

Proof. Recall the definition of Ef (t) and St so that for a point x, we have |f(x) − µt−1(x)| ≤ vtσt−1(x) and

f(x) ≤ f(x∗)− ctσt−1(x). We define a set Wt such that for x ∈ Wt, µt−1(x) ≤ f(x∗)− ctσt−1(x) + vtσt−1(x) =

f(x∗)− vtc̃tσt−1(x). Then, for x3 ∈Wt,

µ3 + ktσ3 ≤ f(x∗)− vtc̃tσ3 + ktσ3.

On the other hand, for a point x1 satisfying

f(x) ≥ f(x∗)− vtσt−1(x),

and as have that x1 ∈ Gt ∈ Dt\St .Then, by definition of St, we have that

µ1 + vtσ1 ≥ f(x∗)− vtσ1

µ1 ≥ f(x∗)− 2vtσ1

⇒ µ1 − ktσ1 ≥ f(x∗)− 2vtσ1 − ktσ1.

Then we can solve for kt by aligning the two inequalities

µt(x) + ktσt(x) ≤ µt(x)− ktσt(x)

⇒ f(x∗)− 2vtσt(x)− ktσt(x) ≥ f(x∗)− vtc̃tσt(x) + ktσt(x)

⇒ −2vtσt(x)− ktσt(x) ≥ vtc̃tσt(x) + ktσt(x).

Hence, we can of course take kt = (c̃t−2)vt. Since c̃t =
√

4 ln t+ 2d ln (BLrdt2) and vt = B+R
√

2 (γt−1 + 1 + ln(2/δ)),

and γT ∈ O
(
(lnT )d+1

)
, then we obtain the previous conclusion by substituting in kt ≥

√
4d ln (BLrdt2) γt ≥

O(
√

ln (BLrdt2) ((lnT )d+1)).
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Theorem 2. For discretization Dt stationary distribution π and superior set

Ξt := {µt−1(x) ≥ f(x⋆)− ϵ}

we have that ∀ϵ > 0,∃ t, s.t. π(Ξt) > q where q is a constant from the transition matrix.

Proof. This follows from lemma 13 and continuity.

Lemma 2. For any historyH′
t−1 such that Ef (t) is true,

P [Ξt ∈ Gt] ≥ 1− 1/t2.

Theorem 3. For any filtration F ′
t−1 such that Ef (t) is true, P

[
xt ∈ Gt | F ′

t−1

]
≥ p− 2/t2

Proof. From TS and the posterior probability given by GP, we denote µi, σi corresponding to µt−1(xi) and σt−1(xi)

for ease of notation. The acceptance probability is given by α13 =
Φ(

µ3−µ1√
σ2
1+σ2

3−2ρσ1σ3

)

1−Φ(
µ3−µ1√

σ2
1+σ2

3−2ρσ1σ3

)
(here ρ denotes the correlation

coefficient).

Suppose we could obtain a bound on O(γT ), i.e. we proceed by assuming O(γT ) ≤ kt. Notice that since

Φ( µ3−µ1√
σ2
1+σ2

3−2ρσ1σ3

) ≤ Φ(µ3−µ1

σ1+σ3
), and by Φ(x) ≤ exp(−x2/2), we have

α13 ≤
e

µ3−µ1
σ1+σ3

1− e
µ3−µ1
σ1+σ3

.

then we can bound π3 by

π3 ≤
ct2 −m

m
· e−k2

t /2

1− e−k2
t /2

=
ct2 −m

m

1

ek
2
t /2 − 1

,

and

lim
t→∞

ct2 −m

m

1

ek
2
t /2 − 1

∈ o(1)

We then verify that our previous assumptions regarding µ3−µ1

σ1+σ2
≤ −kt is correct, which is equivalent to verifying that

µ3 − µ1

σ1 + σ3
≤ −kt ⇐⇒ µ3 + ktσ3 ≤ µ1 − ktσ1.

lim
t→∞

Q13α13

1−Q33
≤ lim

t→∞
(BLr)dt2d

1

ek
2
t /2 − 1

≤ (BLr)dt2d

eln(BLrdt2)(lnT )d+1

= O
(
e(2dln(t)−ln(BLrdt2)(lnT )d+1)

)
= o(1)

(6)

And therefore we can bound π3 successfully and P
[
xt ∈ Gt | F ′

t−1

]
can then be bounded.
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Theorem 4. Let δ ∈ (0, 1), D ⊂ [0, r]d be compact and convex, ∥f∥k ≤ B and {εt}t a conditionally R-sub-Gaussian

sequence. Running GP-TS for a function f lying in the RKHS Hk(D) and with decision sets Dt chosen as above, with

probability at least 1− δ, the regret of MCMC-BO satisfies Õ
(
γT
√
dT

)
Proof. From here the proof follows the one in [2] from Lemma 9-13.

Appendix B Combining MCMC-BO with Existing BO Algorithms

In Algorithm 2 we present MCMC-BO combined with any other existing BO algorithms over continuous domain. For

various BO algorithms, the main difference can reduce to their explicit or implicit acquisition functions. MCMC-BO is

able to take points proposed by BO methods in the MCMC transition to achieve more promising region. Popular BO

acquisition functions also provide good initial positions, reducing the number of MCMC transitions.

Algorithm 2 MCMC-BO with existing BO algorithms

Input Initial dataset D0, Acquisition function A, batch size m, MCMC transition number N , transition noise σ
for t = 0, 1, · · · do

Update posterior distribution on f using Dt

Create descretized candidate points xcand from continuous search domain
Propose a batch x0t = argmaxxcand

A(xcand|Dt)
{MCMC transition start}
for i = 0 to N − 1 do

for k = 0 to m− 1 do
Sample u ∼ Unif[0, 1]
Sample xi+1

tk ∼ xi
tk +N (0,σ)

if u ≥ min
{
1,

P (ft(x
i+1
tk )≥P (ft(x

i
tk))q(x

i+1
tk |xi

tk)

P (ft(xi
tk)≥P (ft(x

i+1
tk ))q(xi

tk|x
i+1
tk )

}
then

xi+1
tk ← xi

tk // Reject the transition
end if

end for
end for
{MCMC transition end}
Observe yt = f(xNt )
Dt+1 ← Dt ∪ (xNt , yt)

end for

Appendix C Experimental Details

C.1 Algorithm Implementation

MCMC-BO: We use Gpytorch to implement GP inference in MCMC-BO[4]. When combining MCMC-BO with

TuRBO and LA-MCTS, we set transition noise as 0.008 ∗L, where L is the size vector of trust region.

TuRBO: TuRBO is implemented based on tutorials from Botorch[1]. While the tutorial only has incomplete

demostration of TuRBO-1, we further modify the original code to TuRBO-M version. The hyperparameters are set as

defaut setting in authors’ reference implementation[3].

LA-MCTS: LA-MCTS, we refer to authors’ reference implementations, and use TuRBO-1 as its local BO solver[10].
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HesBO: For HesBO, we refer to authors’ reference implementations[8]. We transformed defualt GP component

into Gpytorch version for faster inference speed on GPU. We set the embedding dimension to 20 for all tasks

CMA-ES: We use pycma1 to implement CMA-ES, and use defaut setting except setting population size eqauls to

batch size.

Shiwa: We use Nevergrad2 to implement Shiwa, and use default setting to run experiments.

We run BO methods on one Nvidia A100 GPU for CUDA acceleration. All algorithms get initial Ninit points

from Latin hypercube design[6]. For TuRBO-M, each trust region gets Ninit
M initial points, where M is the number of

trust regions. In acquisition maximiation of every iteration, we discretize the search domain using 5,000 points from

scrambled Sobolev sequence.

C.2 Synthetic Functions

The results on all synthetic functions are computed by 5 repeats. Besides Ackley and Rastrigin problems in main

paper, Figure 6 shows the additional experiment on Levy function over domain [−5, 5]d. We evaluate algrithms on

d = 200, 400, 800. MCMC-BO still outperforms all other baselines in all selected dimensions.

Figure 6: Levy Function.

C.3 Mujoco Locomotion Tasks

We use the mean and standard deviation from [5] to normalize observations of Mujoco task. While obsevations in

Mujoco are noisier than synthetic functions, the results on all Mujoco functions are computed by 30 repeats.

C.4 Ablation Study

The results on ablation study are computed by 5 repeats. Table 2 shows the optimization performance under different

transition numbers. Within hundreds of transitions, MCMC-BO is able to achieve good performance.

1https://github.com/CMA-ES/pycma
2https://github.com/facebookresearch/nevergrad
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Function MCMC transition number
20 100 300 500 800

Ackley-20d −0.38±0.21 −0.12±0.06 −0.18±0.02 −0.26±0.23 −0.12±0.14

Rastrigin-20d −5.27±2.50 −4.20±2.23 −2.13±2.01 −3.06±2.09 −3.51±3.20

Table 2: Ablation studies on hyper-parameters of MCMC-BO. The results are the means and standard deviations of the
five replicate independent experiments on Ackley-20d and Rastrigin-20d when the transition noise is 0.001 (The result
of the Rastrigin function is added by 180).

C.5 Low-dimensional Perfomance

In this section, we compare MCMC-BO diagram against two popular GP-based acquisition functions, GP-UCB and

GP-TS, under 1d and 2d Ackley problems. We implement GP-UCB and GP-TS using Gpytorch, and use 5,000 candi-

date points from scrambled Sobolev sequence to discretize the input space. We record the best points found after 3000

function evaluations. The results on low-dimensional performance are computed by 50 repeats.

C.6 MCMC Transition Demonstration

To better demonstrate the behavior of MCMC in optimization, we visualize the transfer process of 1,000 candidate

points in MCMC-BO on Ackley-2d function(see gif file in the supplementary). we use 200 points to initialize MCMC-

BO, and sample a batch of 100 points at each iteration. The transition number and transition noise are 2,000 and 0.01.

Our MCMC transition demonstration is based on GP posterior after 800 function evaluations.
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